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 DAWN STATISTICAL MANEUVER DESIGN FOR VESTA 
OPERATIONS 

Daniel W. Parcher* and Gregory J. Whiffen† 

In July of 2011 the Dawn spacecraft is scheduled to begin orbital operations at 
Vesta, a large main-belt asteroid. Dawn is a NASA Discovery mission that uses 
solar-electric low-thrust ion propulsion for both interplanetary cruise and orbital 
operations. Navigating between the Dawn project’s four targeted science orbits 
at Vesta requires a plan that accounts for uncertainties not only in thrust execu-
tion, orbit determination, and other spacecraft forces, but also large uncertainties 
in characteristics of Vesta – such as the asteroid’s gravity field and pole orienta-
tion. Accommodating these uncertainties requires strategic use of low-thrust 
maneuvers reserved for statistical trajectory corrections. This paper describes the 
placement and evaluation of low-thrust statistical maneuvers during two key 
phases of the Vesta mission along with a discussion of the tools, constraints, and 
methods used to plan those maneuvers. 

INTRODUCTION 

In July of 2011 the Dawn spacecraft is scheduled to begin orbital operations at its first target -- 
Vesta, the 2nd most massive main-belt asteroid. Dawn is a NASA Discovery mission that uses 
solar-electric low-thrust ion propulsion for both interplanetary cruise and orbital operations. Dur-
ing its mission, the Dawn spacecraft will orbit both Vesta and Ceres. The planned observations of 
Vesta and Ceres are designed to provide insight into the conditions and processes acting during 
the formation of the solar system1.  

Four near-polar mapping orbits are planned for Vesta operations (see Figure 1). These four 
mapping orbits provide an opportunity to perform spectral analysis and visual and topographic 
mapping of Vesta’s surface2. More detailed descriptions of the Dawn spacecraft’s science instru-
ments and science objectives at Vesta have been presented in other publications1,2,3,4,5. The first, 
and highest, targeted orbit at Vesta is Survey at 3000 km radius from Vesta. Survey provides the 
opportunity to perform low-resolution spectral analysis. The second mapping orbit is the High 
Altitude Mapping Orbit (HAMO) at 950 km radius. HAMO will be used primarily to perform 
visual and topographic mapping. The third and lowest mapping orbit is the Low Altitude Map-
ping Orbit (LAMO) at 460 km radius. The low LAMO altitude enables additional higher-
resolution spectral analysis and gravity field determination. The final mapping orbit is the High 
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For this study, uncertainties and correlations for Vesta characteristics and spacecraft state 
knowledge were determined via orbit determination analysis of simulated radiometric tracking 
data and optical navigation images. Uncertainties for attitude control thrusting* and maneuver 
execution errors were determined via analysis of spacecraft attitude control and orbit determina-
tion reconstruction of cruise. The techniques used to determine these uncertainties are not pre-
sented here, but a description of the assumed size of each of the uncertainties is included. 

For this analysis, the Dawn spacecraft performance characteristics (thrust, mass-flow, and 
power) included in Reference 9 were used. See Reference 10 for additional discussion of Dawn 
spacecraft characteristics. 

VEIL 

Orbit transfers at Vesta are accomplished via multiple open loop control periods (thrust se-
quences), each providing an opportunity to correct for errors accumulated during the previous 
period. For this study, Veil simulates execution of each of these open loop control periods. Each 
control period is executed while the next is being designed. The maximum size of each open loop 
control period is limited to a duration that can be flown successfully given the many sources of 
uncertainty outlined above. Modes of instability in some design processes become apparent only 
when all control periods are modeled as a fully daisy-chained design. The Veil toolset is designed 
to model the type of daisy-chain design process that will be used for the low-thrust transfers at 
Vesta.  

Initially each transfer will be designed as a single end to end transfer or reference trajectory 
(all open loop design segments are designed simultaneously). The execution of the transfer will 
allow corrections to the reference trajectory to be designed for each open loop control period 
shortly before each period begins. The reference trajectory assumes the current knowledge of all 
necessary parameters at an epoch some time before the transfer begins. For example, the HAMO 
to LAMO reference trajectory is built during the HAMO science orbit. The reference trajectory 
includes time intervals that are reserved for future statistical thrusting. These time intervals come 
in two varieties – Maneuver Expansion Periods (MEPs) and Trajectory Correction Maneuvers 
(TCMs). MEPs allow thrusting periods in the reference trajectory to expand to account for uncer-
tainties. TCMs are isolated periods where thrusting can be added to the reference trajectory to 
correct for statistical errors. 

Veil requires a reference trajectory with a MEP and TCM plan in place as input. A partitioning 
of the transfer into open loop control periods must also be provided. The first step of the Monte 
Carlo process is to sample a delivery (truth) covariance of initial states at the epoch when the last 
orbit determination data is obtained for the reference trajectory. This “truth” state is used in con-
junction with sampled true gravity and execution errors to provide the basis for the true trajectory 
evolution for a specific Monte Carlo case. Separate knowledge covariances are input to Veil that 
approximate how well we can know the true state at each of the design epochs. Design epochs are 
the knowledge epochs assumed for each open loop design cycle during the transfer. Veil then 
proceeds sequentially through the transfer designing each open loop design period based on the 
sampled knowledge of the previous open loop design’s truth propagation. Each design uses fully 
nonlinear optimization and propagation. A sequential design of all open loop periods during the 

                                                      
* “Attitude control thrusting” refers to modeling of net thrust incurred from reaction wheel assembly momentum desat-
uration maneuvers performed by the reaction control thrusters. 
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transfer and the resulting true delivery to the target science orbit constitutes a single Monte Carlo 
“sample”. 

TRUTH ERROR MODELS 

The Vesta gravity field model used for this analysis was developed by Alex Konopliv at the 
Jet Propulsion Laboratory. The field is an 8x8 uniform-density model of Vesta based on a Vesta 
shape model11 and gravitational parameter of 17.8 km3/s2. Reference trajectories for both the Ap-
proach-to-Survey and HAMO to LAMO transfers were based on this uniform-density gravity 
field, and truth values for Veil simulations of both transfers were sampled from the uncertainties 
listed in Table 1 about this reference gravity field.  For the Veil simulations presented here, the 
maneuver execution error models are composed of the maneuver magnitude and pointing uncer-
tainties listed in Table 1. Maneuver execution errors assume a normal distribution*. Maneuver 
execution errors are sampled at a frequency of once every 12 hours and applied uniformly to all 
thrust vectors during the sample time period. Thrust pointing errors are held fixed in the space-
craft frame between sample times. No time correlation between subsequent maneuver execution 
error samples was assumed. 

 

Table 1 - Uncertainties for Veil Simulation Truth Sampling 

Parameter Approach to Survey 

Uncertainty† 

(Normal Distribution) 

HAMO to LAMO 

Uncertainty† 

(Normal Distribution) 

Vesta GM (km3/s2) μ=17.8, σ=0.41 μ=17.8, σ=0.00022 

Vesta Pole (deg) σ=4.0 σ=0.0009 

Vesta J2  μ=0.0407, σ=100% μ=0.0407, σ=0.01% 

Vesta Harmonics 100% 4rth order: 1%,  

5th order: 33% 

6th order: 111% 

Maneuver Magnitude** 0.5% 0.5% 

Maneuver Pointing** (deg) 0.5 0.5 

Attitude Control Thrust Magnitude*** (mm/s) 3 3 
† Sampled with respect to design values. For Gravity, design values correspond to the uniform-density gravity field. 

** Maneuver errors sampled and uniformly applied to thrust profiles every 24 hours early and every 12 hours late during 
Approach to Survey and every 12 hours during HAMO to LAMO. 

*** Attitude control thrust magnitude errors are applied every 12 hours in random directions. 

                                                      
* The Dawn spacecraft team continues to develop their understanding of maneuver execution error, especially the de-
pendency on thrust vector rates and accelerations throughout designed thrust sequences. After the analysis presented 
here was completed, improved understanding of maneuver execution errors resulted in much more complex maneuver 
error modeling and has the potential to result in changes to the mission architecture. 
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As is the case during interplanetary cruise, each Approach to Survey thrust sequence is de-
signed to retarget Survey orbit, with changes not only to the thrust sequence being designed, but 
to all future thrust vectors leading up to Survey orbit. The Veil Monte Carlo simulation of Ap-
proach to Survey simulates this behavior as well, targeting Survey orbit with each thrust sequence 
design, but only executing the next thrust period before re-optimizing again. 

Table 2 shows orbit determination uncertainties at the start of the design cycles. A substantial 
improvement in Vesta’s pole estimation is obtained between design cycles 3 and 4 due to rota-
tional characterization images taken between these designs. Knowledge in Vesta’s gravitational 
parameter is also substantially improved by design cycles 4 and 5, after capture at Vesta is 
achieved* and Vesta’s gravity begins to show a strong signal in spacecraft radiometric tracking 
data. Early knowledge of Vesta’s pole and gravitational parameter is key to successfully targeting 
Survey. Statistical thrusting durations required to correct for these errors increase dramatically the 
later the knowledge is obtained. The knowledge of J2 is not expected to improve significantly 
during Approach. Only after thrusting ends and Survey starts will measurements improve J2 es-
timation. 

Table 2 - Orbit Determination 1σ Knowledge at Design Epochs for Veil Simulation of 
Approach to Survey 

 

During the first three thrusting sequences of Approach, knowledge of Vesta’s gravitational pa-
rameter and pole does not improve (see Table 2). Sampling the knowledge in Vesta’s pole or GM 
for these first three sequences during a Veil simulation therefore would lead to variations in the 
knowledge estimate of GM and pole that would not occur during operations. The estimation of 
the pole and GM will not change during operations if there is no new data upon which to base a 
new estimation. Since sampling Vesta’s pole and GM during this time is not an accurate represen-
tation of what will occur during operations, and results in large changes to the sampled values 
(thereby artificially forcing significant thrust vector corrections), the pole and GM knowledge are 
not sampled until the fourth design cycle. Note that the truth pole and GM are always sampled 
once at the start of each Veil Monte Carlo simulation. 

The Veil Monte Carlo analysis of Approach was performed based on the Approach architec-
ture shown in Figure 3, the orbit determination uncertainties indicated in Table 2, and the maneu-
ver execution models in Table 1. A total of 2,231 full simulations of Approach were completed. 

                                                      
* Vesta capture indicates zero spacecraft orbital energy with respect to Vesta. 

Orbit Determination 
Knowledge Time 

Position 
(km) 

Velocity 
(m/s) 

GM 
(km3/s2) 

Pole 
(deg) 

Rotation 
(deg/day) 

J2     
(normalized)

Injection 548 0.626 0.407 3.886 0.00029 0.0200 

Design Cycle 1 Start 2,320 0.992 0.407 3.886 0.00029 0.0200 

Design Cycle 2 Start 1,495 0.766 0.407 3.886 0.00029 0.0200 

Design Cycle 3 Start 188.7 0.302 0.407 3.886 0.00029 0.0200 

Design Cycle 4 Start 180.4 0.350 0.314 0.618 0.00021 0.0200 

Design Cycle 5 Start 169.7 1.880 0.025 0.247 0.00001 0.0200 
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Each Approach simulation consisted of 5 thrust sequence designs including a redesign of all 
thrusting between the thrust sequence epoch and Survey arrival. 

Table 3 indicates the feasibility of each of the simulations listed by thrust sequence. For Ap-
proach, feasibility is measured as the ability to design a trajectory that reaches the Survey target 
to within tolerances given the total thrusting time available (including MEPs and TCMs) for a 
given thrust sequence and current knowledge. A successful Survey delivery achieves the follow-
ing target and tolerances: (1) an orthogonal Vesta relative velocity and position (within 4 arc 
minutes); (2) a circular orbit velocity (within 5 cm/s); (3) the desired orbit normal (within 4 arc 
minutes); and (4) the desired orbital period (within 3 minutes). The targeting of Survey is phase 
free. The above tolerances must be met without violating the thrust magnitude constraint.  

It is important to note that as knowledge of Vesta physical parameters improve, the targets de-
fined above will change. Large changes in knowledge (for example pole orientation and gravita-
tional parameter) can place a great deal of strain on the limited control authority available and 
cause failures in feasibility in sequences 3, 4, and 5. However, this level of feasibility is consid-
ered acceptable for navigation. It is interesting to note that the feasibility in Sequence 5 is larger 
than Sequence 4, indicating that some design failures in Sequence 4 were able to recover once 
MEPs in Sequence 5 became available. 

 

Table 3 - Approach to Survey Veil Simulation Design Feasibility 

Thrust Sequence Design Feasibility 

Sequence 1 100% 

Sequence 2 100% 

Sequence 3 99.86% 

Sequence 4 99.55% 

Sequence 5 99.59% 

 

Figure 4 shows optimal coasting* during the designs. Feasibility failures have zero optimal 
coasting. Interestingly, as shown in Figure 4, many of the thrust sequences have an average opti-
mal coasting duration greater than the duration of the MEPs. This indicates that, once available 
for thrusting, the MEPs occur at more efficient times than other portions of the thrust sequence, 
thereby allowing a longer overall coasting duration. Optimal coasting typically resides toward the 
middle of the thrust sequence, as the optimizer prefers to use the leverage available by placing 
thrust at the beginning and end of the thrust sequence. This behavior was discovered during early 
Veil analysis of Approach, and indicated that, to ensure that MEPs were placed at the most effec-
tive location during each thrust sequence, MEPs should be placed at the beginnings and ends of 
each thrust sequence. 

                                                      
* Optimal coasting is coasting that occurs when additional thrusting is not needed to achieve the desired target in the 
flight time allowed. 
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quency while the next thrusting sequence is designed. Quiet Periods are primarily needed at alti-
tudes near or below the 1:1 resonance. 

 

Table 4 – HAMO to LAMO Veil Simulation Orbit Determination 1σ Knowledge at De-
sign Epochs 

 

All but two design cycles during the HAMO to LAMO transfer are 3 days in duration. The 
remaining two designs are only 36 hours in duration, associated with 36 hour quiet periods, de-
signed to achieve as accurate a delivery as possible. The first 36 hour design occurs immediately 
following the 1:1 resonance (design cycle 6), and the second occurs near LAMO (design cycle 9), 
both areas where delivery accuracy is crucial. Table 5 shows delivery accuracies to the start of 
each thrust sequence throughout the transfer. For the resonance (see the start of sequence 6), de-
livery accuracy is critical to avoid deviating from the designed trajectory too far to recover using 
available MEPs. For LAMO, delivery accuracy is critical to avoid nearing Vesta occultation of 
the Sun, a spacecraft safety requirement13. 

To help ensure that the HAMO to LAMO transfer is resilient to errors and perturbations, a 
powered-flight stability analysis was performed on the reference trajectory14. This stability analy-
sis identified portions of the transfer that are particularly sensitive to perturbations during pow-
ered flight. The powered-flight stability analysis helped indicate where Quiet periods, TCMs, or 
shorter design cycles are necessary to improve waypoint delivery accuracy – primarily at and just 
below the 1:1 resonance. 

The Veil Monte Carlo analysis of the HAMO to LAMO transfer was based on the transfer ar-
chitecture shown in Figure 9, the orbit determination uncertainties indicated in Table 4, and the 
maneuver execution model in Table 1. The Veil results include 1,473 full simulations of the 
transfer, each consisting of 9 optimized thrust sequences individually targeted back to the refer-
ence trajectory waypoints based on sampled knowledge. Computation time for this analysis is 
about 1.3 full HAMO to LAMO simulations per CPU per day, or 1,134 CPU-days in total to ob-
tain 1,473 complete designs. 

 

OD Knowledge Time Position 
(km) 

Velocity 
(m/s) 

GM 
(km3/s2) 

Pole (deg) Rotation 
(deg/day) 

J2     
(normalized)

Injection 15.978 2.205 0.000217 0.00092 1.7e-7 4.54e-6 

Design Cycle 1 Start 1.5002 0.20792 0.000223 0.00054 1.7e 1.16e-6 

Design Cycle 2 Start 7.4119 1.4492 0.000220 0.00053 1.7e 0.99e-6 

Design Cycle 3 Start 6.2591 1.6608 0.000219 0.00053 1.7e 0.82e-6 

Design Cycle 4 Start 6.2712 1.7717 0.000204 0.00053 1.7e 0.72e-6 

Design Cycle 5 Start 14.7818 5.2791 0.000201 0.00053 1.7e 0.64e-6 

Design Cycle 6 Start 0.47646 0.15221 0.000193 0.00053 1.7e 0.48e-6 

Design Cycle 7 Start 4.9245 1.7004 0.000174 0.00053 1.7e 0.44e-6 

Design Cycle 8 Start 0.65263 0.24929 0.000164 0.00053 1.7e 0.34e-6 

Design Cycle 9 Start 0.011283 0.00548 0.000157 0.00048 1.7e 0.24e-6 
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Table 5 – HAMO to LAMO Veil Simulation 1σ Delivery Accuracy to Thrust Sequence 
Start 

Thrust Sequence 
Start 

Position 
Error (km) 

Velocity 
Error (m/s) 

Injection 15.98 2.205 

Thrust Sequence 1 40.02 5.725 

Thrust Sequence 2 13.02 2.549 

Thrust Sequence 3 25.29 6.534 

Thrust Sequence 4 10.01 2.836 

Thrust Sequence 5 16.89 6.008 

Thrust Sequence 6 9.86 3.138 

Thrust Sequence 7 4.97 1.712 

Thrust Sequence 8 12.45 4.754 

Thrust Sequence 9 20.91 9.805 

LAMO 1.233 0.483 

 

A successful HAMO to LAMO transfer architecture requires both design feasibility and an ac-
curate delivery to LAMO. All simulations returned a feasible design for all thrust sequences for 
the HAMO to LAMO transfer. In this case, feasibility is measured as the ability to design a tra-
jectory for a given thrust sequence that successfully targets the corresponding reference trajectory 
waypoint, without violating the thrust magnitude constraint, and without missing the state target 
by more than 1 km and 9 cm/s.  

There are two primary metrics for a successful LAMO delivery -- adequate LAMO ground-
track coverage9, a criteria which is satisfied in all 1,473 Veil samples, and stable β angle at the 
beginning of LAMO until the first LAMO orbit maintenance maneuver (OMM). Satisfying the 
latter requirement relies primarily upon LAMO delivery accuracy (see Table 5), but is aided by 
targeting a LAMO that is selected specifically for β angle stability13. An OMM analysis conduct-
ed on candidate stable LAMOs established a 1σ LAMO delivery requirement of 2 km in position 
and 1 m/s in velocity to ensure controllability. This requirement is well satisfied by the 1.2 km, 
0.5 m/s LAMO delivery achieved by the Veil simulations (see Table 5). Notably, this delivery 
accuracy could not be accomplished without the aid of TCM-2, the purely statistical thrust se-
quence prior to LAMO. TCM-2 is preceded by a short design cycle during a quiet period to en-
sure the best possible delivery. Without TCM-2, the delivery to LAMO would be 20.4 km and 9.6 
m/s 1σ, resulting in unacceptable β angle drift during LAMO. 

From an attitude control perspective, the HAMO to LAMO transfer contains some of the most 
aggressive thrust profiles anticipated at any time on the Dawn mission. The short orbital period 
coupled with significant out-of-plane thrusting results in thrust profiles that require significant 
rates and accelerations in spacecraft attitude. Higher attitude control rates and accelerations result 
in larger maneuver execution errors (both from spacecraft pointing and thruster gimballing) and 
increased attitude control thrusting. Thrust vector directional rates and accelerations increase rap-
idly as optimal coasting in a given thrust sequence decreases. As a result, significant optimal 
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Regarding the first method, it is generally straightforward to determine the increase in MEP 
duration needed to improve feasibility, simply by observing the amount of additional thrusting 
required to enable the infeasible samples to reach the target. It is important to consider, however, 
that an increase in MEP size will generally increase delivery errors to the following thrust se-
quence*. The size of the MEP required to achieve sufficient feasibility may also not be realistic 
for the flight time allowed. In the case of infeasibilities following the resonance, increasing the 
MEP size was not an attractive option due to the dynamic environment. An increase in MEP size 
corresponds to increased total maneuver execution error and an increase in thrust sequence deliv-
ery error. 

The second viable option for reducing infeasibilities in sequences 6 through 9 was to improve 
the delivery error from the previous thrust sequence. Improving the previous sequence delivery 
error can be accomplished in a number of ways: improving the orbit determination knowledge at 
the design epoch for the previous sequence, shortening the design cycle for the previous se-
quence, requiring a Quiet Period during the design cycle of the previous sequence, or simply 
shortening the previous sequence to reduce maneuver execution errors. Each of these will result 
in improved delivery accuracy and an increase in design feasibility. For the HAMO to LAMO 
transfer, improving the orbit determination knowledge was not pursued because no clear correla-
tion could be determined between poor orbit determination knowledge and infeasible cases. De-
livery error was large despite excellent state knowledge at the start of the design. Shortening the 
design cycle was also not an option, as the three day design cycle was the minimum design cycle 
allowable for this time period with the ground resources available. Shortening the thrust sequence 
was also not a viable option given the design cycle schedule. The only option remaining was to 
implement a “Quiet Period”. Quiet periods are often a last resort due to the flight time they re-
quire.  In this case, the presence of a quiet period improved feasibility from 92% to 100% of all 
samples.  

 

CONCLUSIONS 

The Monte Carlo trajectory optimization tool called Veil was used to investigate trajectory 
sensitivities to statistical variation in spacecraft performance, orbit determination and key charac-
teristics of Vesta. This analysis was used to design trajectory architectures that include statistical 
maneuvers capable of correcting for these error sources. Veil was then used to show that a high 
percentage of the perturbed trajectories are capable of delivering to the targeted science orbits to 
within required tolerances. 

Orbit transfers were divided into thrust design cycles to minimize thrust-execution errors and 
to take advantage of increasing knowledge of Vesta, while maintaining a supportable sequence 
development schedule for the Dawn Flight Team. Each design cycle contained deterministic 
thrusting needed to achieve orbit targets, and maneuver expansion periods (MEP) or a trajectory 
correction maneuver (TCM) period reserved for statistical thrusting needed to correct errors.  

For the Approach-to-Survey architecture presented, Veil was used to compute 2,231 Vesta-
Approach-to-Survey trajectories, each of which included 5 design cycles individually targeted to 

                                                      
* This holds true for feasible samples only. Infeasible samples will have large delivery errors. Increasing MEP size will 
generally improve feasibility for a given thrust sequence, which will improve delivery errors across all samples. How-
ever, when considering only feasible samples, the increased flight time will result in increased delivery error. 
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Survey orbit. Of the trajectories computed, 99.56% achieved Survey orbit conditions to the re-
quired tolerance. 

For the HAMO to LAMO Orbit Transfer architecture presented, Veil was used to compute 
1,473 trajectories, each of which included 9 design cycles individually targeted to pre-determined 
intermediate waypoints. Of the transfers computed, 100% achieved the LAMO orbit conditions to 
the required tolerance.  

Achieving the necessary design feasibility throughout the transfers and delivery accuracy to 
the targeted science orbits required strategic placement of MEPs, purely statistical Trajectory 
Correction Maneuvers, Quiet Periods, and short design cycles. Placement was dictated by Vesta’s 
dynamic gravity environment and science orbit tolerances. Accurate delivery to the Survey and 
LAMO science orbits will help ensure successful scientific observations of Vesta. 
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